¿Qué tienen en común las galaxias, las nubes, tu sistema nervioso, las cordilleras y las costas? Todos contienen patrones interminables conocidos como fractales.
¿Qué tienen en común las galaxias, las nubes, tu sistema nervioso, las cordilleras y las costas? Todos contienen patrones interminables conocidos como fractales.
Son herramientas importantes en muchos campos, desde la investigación sobre el cambio climático y la trayectoria de meteoritos peligrosos hasta la investigación del cáncer -ayudando a identificar el crecimiento de células mutadas- y la creación de películas de dibujos animados.
Esos son unos pocos ejemplos y hay quienes creen que, debido a su naturaleza altamente compleja y misteriosa, aún no se ha descubierto todo su potencial. Desafortunadamente, no hay una definición de fractales que sea simple y precisa. Como tantas otras cosas en la ciencia y las matemáticas modernas, las discusiones sobre la «geometría fractal» pueden confundir rápidamente a los que no tenemos mentes matemáticas.
Y eso es una verdadera lástima, porque hay una profunda belleza y poder en la idea de los fractales.
El término lo acuñó un científico colorido y poco convencional llamado Benoit Mandelbrot, un matemático polaco nacionalizado francés y estadounidense. Tenía un don para ver los patrones ocultos de la naturaleza. Podía ver reglas donde el resto de nosotros vemos la anarquía. Podía ver forma y estructura, donde el resto de nosotros solo vemos un desastre sin forma.
Mandelbrot se dedicó toda la vida a buscar una base matemática simple para las formas irregulares del mundo real. Le parecía perverso que los matemáticos hubieran pasado siglos contemplando formas idealizadas como líneas rectas o círculos perfectos.
«Las nubes no son esferas, las montañas no son conos, las costas no son círculos y la corteza de los árboles no es lisa, ni los rayos viajan en línea recta», escribió Mandelbrot.
El caos y la irregularidad del mundo -a lo que llamaba «aspereza»- es algo para celebrar. Para él, habría sido una pena que las nubes fueran realmente esferas y las montañas, conos.
Sin embargo, no tenía una forma adecuada o sistemática de describir las formas ásperas e imperfectas que dominan el mundo real. Así que se preguntó si había algo único que definiera todas las formas variadas de la naturaleza.
Subyacente a casi todas las formas en el mundo natural hay un principio matemático conocido como autosimilitud, que describe cualquier cosa en la que la misma forma se repite una y otra vez a escalas cada vez más pequeñas. Un buen ejemplo son las ramas de los árboles.
El mismo principio de ramificación se aplica en la estructura de nuestros pulmones y en la forma en que los vasos sanguíneos se distribuyen por nuestros cuerpos. Y la naturaleza puede repetir todo tipo de formas de esta manera.
¿Qué pasaría si se pudiera representar esa propiedad de la naturaleza en las matemáticas? ¿Qué pasaría si pudieras capturar su esencia para hacer un dibujo? ¿Cómo sería ese dibujo?
La respuesta vendría del mismo Mandelbrot, quien había aceptado un trabajo en IBM a fines de la década de 1950 para obtener acceso a su increíble poder de cómputo y dar rienda suelta a su obsesión con las matemáticas de la naturaleza. Armado con una supercomputadora de nueva generación, comenzó a investigar una ecuación muy curiosa y extrañamente simple que podía usarse para dibujar una forma muy inusual.